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DILATION FOR SETS OF PROBABILITIES 

Carnegie Mellon University 

Suppose that a probability measure P is known to lie in a set of 
probability measures M. Upper and lower bounds on the probability of any 
event may then be computed. Sometimes, the bounds on the probability of 
an event A conditional on an event B may strictly contain the bounds on 
the unconditional probability of A. Surprisingly, this might happen for 
every B in a partition a. If so, we say that dilation has occurred. In 
addition to being an interesting statistical curiosity, this counterintuitive 
phenomenon has important implications in robust Bayesian inference and 
in the theory of upper and lower probabilities. We investigate conditions 
under which dilation occurs and we study some of its implications. We 
characterize dilation immune neighborhoods of the uniform measure. 

1. Introduction. If M is a set of probability measures, then P(A) = 

sup,, ,P(A) and ?(A) = inf,, ,P(A) are called the upper and lower prob- 
ability of A, respectively. Upper and lower probabilities have become increas- 
ingly more common for several reasons. First, they provide a rigorous mathe- 
matical framework for studying sensitivity and robustness in classical and 
Bayesian inference [Berger (1984, 1985, 1990), Lavine (1991), Huber and 
Strassen (1973), Walley (1991) and Wasserman and Kadane (1992)l. Second, 
they arise in group decision problems [Levi (1982) and Seidenfeld, Schervish 
and Kadane (1989)l. Third, they can be justified by an axiomatic approach to 
uncertainty that arises when the axioms of probability are weakened [Good 
(1952), Smith (1961), Kyburg (1961), Levi (1974), Seidenfeld, Schervish and 
Kadane (1990) and Walley (1991)l. Fourth, sets of probabilities may result 
from incomplete or partial elicitation. Finally, there is some evidence that 
certain physical phenomena might be described by upper and lower probabili- 
ties [Fine (1988), and Walley and Fine (1982)l. 

Good (1966, 1974), in response to comments by Levi and Seidenfeld, Seiden- 
feld (1981) and Walley (1991) all have pointed out that it may sometimes 
happen that the interval [?(A), P(A)] is strictly contained in the interval 
[_P(AIB), P(AIB)]  for every B in a partition 9.In this case, we say that 9 
dilates A. It is not surprising that this might happen for some B. What is 
surprising, is that this can happen no matter what B E 9 occurs. Consider 
the following example [Walley (1990, pages 298-2991. 

Received October 1991; revised September 1992. 

'supported by NSF Grant SES-92-089428. 

2$upported by NSF Grant DMS-90-05858. 

AMS 1991 subject classifications. Primary 62B15; secondary 62F35. 

Key words and phrases. Conditional probability, density ratio neighborhoods, &-contaminated 


neighborhoods, robust Bayesian inference, upper and lower probabilities. 

1139 




1140 T. SEIDENFELD AND L. WASSERMAN 

Suppose we flip a fair coin twice but the flips may not be independent. Let 
H, refer to heads on toss i and T, tails on toss i ,  i = 1,2. Let M be the set of 
all P such that P ( H l ) = P(H,) = i,and P(HI  and H,) =p where 0 Ip 5 $. 
Now suppose we flip the coin. Then P(H,) = i but 

0 = -P(H,JH,) < _P(H,) = = H ( H , )  < P(H,~H,)= 1 

and 

o = -P(H,IT,)  < _P(H,)= + = B(H,) < P(H,(T,) = I. 

We begin with precise beliefs about the second toss and then, no matter what 
happens on the first toss, merely learning that the first toss has occurred 
causes our beliefs about the second toss to become completely vacuous. The 
important point is that this phenomenon occurs no matter what the outcome of 
the first toss was. This goes against our seeming intuition that when we 
condition on new evidence, upper and lower probabilities should shrink toward 
each other. 

Dilation leads to some interesting questions. For example, suppose the coin 
is tossed and we observe the outcome. Are we entitled to retain the more 
precise unconditional probability instead of conditioning? See Levi (1977)and 
Kyburg (1977)for discussion on this. 

To emphasize the counterintuitive nature of dilation, imagine that a physi- 
cian tells you that you have probability i that you have a fatal disease. He 
then informs you that he will carry out a blood test tomorrow. Regardless of 
the outcome of the test, if he conditions on the new evidence, he will then have 
lower probability 0 and upper probability 1 that you have the disease. Should 
you allow the test to be performed? Is it rational to pay a fee not to perform 
the test? 

The behavior is reminiscent of the nonconglomerability of finitely additive 
probabilities. For example, if P is finitely additive, there may be an event A 
and a partition 39 such that P ( A )  = a, say, but P(AIB,) = $ for every 
B,  E 39. See Schervish, Seidenfeld and Kadane (1984).A key difference, how- 
ever, is that nonconglomerability involves infinite spaces whereas dilation 
occurs even on finite sets-dilation cannot be explained as a failure of our 
intuition on infinite sets. A key similarity is that both phenomena entail a 
difference between decisions in normal and extensive form [Seidenfeld (1991)l. 
It is interesting to note that Walley (1991) regards nonconglomerability as 
incoherent but he tolerates dilation. 

The purpose of this paper is to study the phenomenon of dilation and to 
investigate its ramifications. We believe that this is the first systematic study 
of dilation. As we shall point out, dilation has implications for elicitation, 
robust Bayesian inference and the theory of upper and lower probabilities. 
Furthermore, we will show that dilation is not a pathological phenomenon. 

In Section 2 we define dilation and we give some characterizations of its 
occurrence. Examples are studied in Section 3 with particular emphasis on 
&-contaminated models. Section 4 characterizes dilation immune neighbor- 
hoods. Finally, we discuss the results in Section 5 .  
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2. Dilation. Let R be a nonempty set and let 8 ( R )  be an algebra of 
subsets of R. Let 9be the set of all probability measures on C(R). If M is a 
set of probability measures on &(R), define the upper probability function P 
and lower probability function _P by 

-P ( A )  = inf P ( A )  and P ( A )  = sup P ( A ) .  
P E M  P E M  

We assume that M is convex and closed with respect to the total variation 
topology. 

The most common situation where a set of probabilities M would arise is in 
the theory of robustness. In classical robustness [Huber (1981, 1973)l M is a 
class of sampling models. In Bayesian robustness [Berger (1984) and Lavine 
(1991)l M is a set of prior distributions. Another way the sets of probabilities 
arise is through the theory of upper and lower For example, 
Smith (1961) and Walley (1991), among others, show that if the axioms of 
probability are weakened, then we end up with upper and lower probabilities. 
This approach is a generalization of de Finetti's (1964) notion of coherence. 

If _P( B) > 0, define the conditional upper and lower probability given B by 

-P(AIB) = inf P ( A  n B) /P (B)  and P ( A I B )= sup P ( A  n B) /P (B) .
P E M  P E M  

This is the natural way to define an upper and lower conditional probability if 
the robustness point of view is taken. If we follow the axiomatic approach of 
Walley (1991), then this way of defining upper and lower conditional probabili- 
ties can be justified through a coherence argument. 

Say that B dilates A and write B 4 A if [_P(A), P(A)] is strictly contained 
in [_P(AIB), P(AIB)I. (Here we mean strict containment in the set-theoretic 
sense.) If B is a finite partition for which _P(B) > 0 for all B E g,then we 
say that L2' dilates A and we write L2' 4 A if B 4 A for every B E @. We will 
say that M is dilation prone if there exists A and @ such that B 4 A. 
Otherwise, M is dilation immune. We will say that 33' strictly dilates A if 
-P(A(B1< f(A1 P(A) < P(A(B) for every B E B.Obviously, if either B cA 
or B cA V o r  some B E L2', then dilation is impossible. Hence, we shall 
assume that A n B # 0 and A" n B # 0 for all B E L2'. 

Given M, define 

and 

It will be useful to define the following two notions of dependence. For P E9 
define Sp(A, B)  = P(A n B)/(P(A)P(B)) if P(A)P(B) > 0 and Sp(A, B)  = 

1if P(A)P(B) = 0 and also define dp(A, B)  = P(A n B) - P(A)P( B). Note 
that Sp( A, B) < 1 if and only if Sp(A, Be) > 1. (This is a consequence of 
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Lemma 3.2.) Also define 

C+(A,B)  = {PE 9;dp(A,  B )  > 0) and 

2 - ( A ,  B )  = {PE 9;dp(A,  B )  < 0). 

The surface of independence for events A and B is defined by 

S ( A ,  B)  = {PE 9;dp (A ,  B )  = 0). 

The next four theorems show that the independence surface plays a crucial 
role in dilation. A necessary condition for dilation is that the independence 
surface cuts through M (Theorem 2.1). But this condition is not sufficient. A 
sufficient condition is given in Theorem 2.3. A variety of cases exist in 
between. These are explored in Sections 3 and 4. 

THEOREM2.1. Let @ = (B, Bc). If 99 dilates A, then M n S ( A ,  B) # 0 .  

PROOF. Choose P E M,(AIB). Then _P(AIB)= P(AIB) = Sp(A, B)P(A). 
Dilation implies that Sp(A, B)P(A) I _P(A). Thus, Sp(A, B) I _P(A)/P(A) 
I 1.Similarly, there exists Q E M such that S,(A, B) 2 1.Let R, = aP + 
(1- a)& and let S, = S R j A ,B). Then S, is a continuous function of a and 
by the intermediate value theorem, there is an a E (0 , l )  such that S, = 1. 
Thus, R, E /(A, B)  and by convexity of M R, E M. 

If @ strictly dilates A, then M need not be closed for the previous result. 

THEOREM2.2. If @ strictly dilates A, then for every B E @, M,(AIB) c 
2-(A, B) and M*(AIB) c 2+(A ,B). 

PROOF. Choose P E M,(AIB). Then P(AB)/P(B) = _P(AIB) < _P(A) I 
P(A). Hence, Sp(A, B) < 1 so that P E 2-(A, B). Similarly for the other 
case. 

THEOREM2.3. If for every B E @, 

M,(A) n 2 - ( A ,  B )  # 0 and M Y ( A )n C+(A,B) # 0, 

then 99 strictly dilates A. 

PROOF. Choose P E M,(A) n 2-(A,  B). Then P(A) = _P(A)and P(AB) 
< P(A)P(B).  Thus, _P(A)= P(A) > P(AB)/P(B) = P(AIB) 2 _P(AIB). A 
similar argument applies for the upper bound. 

Many axiomatic approaches to probability involve an assumption that we 
can enlarge the space and include events with given probabilities. For example, 
we might assume that we can add an event that corresponds to the flip of a 
coin with a prescribed probability p. DeGroot (1970), Koopman (1940) and 
Savage (1972) all make an assumption of this nature. If we include this 
assumption, then as the next theorem shows, dilation always occurs with 
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nontrivial upper and lower probabilities. For any event A, define &(A) = 

ID, A ,  A", A u A"). Given two algebras ~28and B, let S9 8 B be the product 
algebra. 

THEOREM2.4. Suppose there exists E E S9 such that 0 < a < P < 1, where 
a = f ( E )  and P = RE).Let A and B be events and let S9' = S9 8 &(A) 8 
&( B). For A E [0,11 define a set ofprobabilities on @ by M' = { P  8 Po,, 8 PA; 
P E M ) ,  where PO,,(A)= $, PA(B)= A. Here P 8 Po,, 8 PA is the product 
measure on S9' with P ,  Po,, and PA as marginals. Then there exists A such 
that strict dilation occurs i n  M' .  

PROOF. We prove the case where P < $. Choose A such that 

Let F = (R x A x B )  u ( E  x A x B c )  )U ( E c  x A" x Bc) .  Then _P(F)= 

P ( F )  = $ and _P(F(A)= A + ( 1  - A)a < $ < A + ( 1  - A)@ = P(FIA).  Also, 
P(FIAc) = ( 1  - A ) ( l  - P )  < $ < ( 1  - A ) ( l  - a )  = P ( F I A ~ ) .Thus, {A,A"}-
strictly dilates F. 

REMARK.Theorems 2.2 through 2.4 are still true even if the convexity of 
M is dropped. Also, Theorem 2.4 does not require closure. 

3. Examples. In this section we consider classes of probabilities that are 
common in Bayesian robustness [Berger (1984, 1985, 1990)l and we find 
conditions for dilation. A detailed investigation of a certain class of upper 
probabilities is given in Section 4. 

EXAMPLE3.1. In between the necessary condition of Theorem 2.3 and the 
sufficient condition of Theorem 2.4 are many cases. This is illustrated with 
the following example. Let P E 2 - ( A ,  B )  and Q E 2 + ( A ,B ) .  Let M be the 
convex hull of P and Q. Thus, M is a line segment. If P ( A )  = &(A) ,  then 
there is dilation. In other words, if the line segment M is parallel to the side of 
the simplex corresponding to the event A ,  there is dilation. This is the 
sufficient condition of Theorem 2.4. Now suppose that P ( A )  I&(A)and 
define the angle of Q with respect to P by 

and the angle of P with respect to Q by 

Then there is dilation if and only if both angles are less than 1. In other words, 
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dilation occurs when the line segment is sufficiently "perpendicular" to the 
surface of independence. 

EXAMPLE3.2 (&-contaminatedclasses). The most common class of probabil-
ities that are used in robustness is the &-contaminated class [Huber (1973, 
1981) and Berger (1984, 1985, 1990)l that is defined by M = ((1- E)P+ FQ; 
Q E 91,where P is a fixed probability measure and F is a fixed number in 
[O, 11. To avoid triviality, assume F > 0 and that P is an internal point in the 
set of all probability measures. 

LEMMA3.1. Dilation occurs for this class if and only if 

PROOF.Note that 

P ( A )  = (1  - & ) P ( A )  and _P(AlB) = -
(1  - &)P(AB)  

( 1  - & ) P ( B )+ E '  

Thus, _P(AIB)< _P(A) if and only if dp(A, B)  < &P(A)P(BC).The other 
inequalities follow from similar computations. 

REMARK. If dp(A, B)  = 0, then dilation occurs for every E > 0. 

It is useful to reexpress the above result as follows. Using that fact that 
P (  B)(Sp(A", B)  - 1) = P(Bc)(l - Sp(Ac,Bc))and using the fact that S,(. , . ) 
is symmetric in its arguments, P(AI(1 - S,(A, B)) = P(Ac)(Sp(Ac,B)  - I), 
so we have (with obvious generalization to larger partitions): 

P(A1B) < f ( A )  if and only if F > (1 - S,(A, Bc) )-

and 

P ( A I B )> P ( A )  if and only if E > (1- s,(A", B")). 

If P is a nonatomic measure on the real line, then there always exist A and 
B with positive probability that are independent under P .  Thus, S, = 1and 
hence dilation occurs for every F > 0. 

To pursue this example further, we now investigate the behavior of dilation 
over subpartitions. Specifically, we show that if there is a partition that strictly 
dilates A, then there is a binary partition that strictly dilates A. To prove this, 
we need a few lemmas that apply generally. The proofs of the next three 
lemmas are straightforward and are omitted. 
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LEMMA3.3. Let B = C u D for events C n D = 0.Then 

REMARK. Note that the lemma generalizes in an obvious way for a finite set 
of disjoint events. 

REMARK. If T = {Cl , .. . ,C,} dilates A ,  then T dilates A'. 

LEMMA3.4. &-contamination is preserved under subalgebras. That is, if 
M = ( (1- E ) P+ EQ; Q arbitrary) and d'is a subalgebra of &(a),then 
M,= ((1 - E)P&+ FQ; Q arbitrary), where M,= {P,; P E M )  and Pd is the 
restriction of P to d. 

THEOREM3.1. Let M be an &-contaminated class. Suppose that 7, = 

{C,, . . . , C,} is a finite partition that strictly dilates A. Then there exists a 
binary partition = { B ,B '1 that strictly dilates A. 

PROOF. Assume that n 2 3 and there is no strict dilation in any coarser 
partition 7 '  c T,. We have that 

P(AIC,)  < f ( A )  IP( A)  < P(AIc , ) .-

Define three families of events from 7, by 

S + =  { E ;  S p ( A ,  E )  > 11, S - =  { E ;S p ( A ,  E )  < l } ,  

By Lemma 3.1 we know that independence is sufficient for dilation in an 
&-contamination model. Hence, if S 1  Z 0,we are done. So assume S 1  = 0. 

Let C+= {C, E T,; Ci E S + }  and (C+Ic= C-= (Ci E .rr,; Ci E S-1. From 
the assumption that .rr, strictly dilates A, by the remark following Lemma 3.1, 

and 

( 2 )  F > ( 1  - S p ( A C , C f ) )  if Ci E C-.  

From Lemma 3.2 and 3.4 and the assumption that there is no strict dilation in 
the partition {Ci, C,"), we conclude that 

(3) E I( 1  - SP(  AC,  C , ) )  if C, E C+ 

and 

( 4 )  & < ( I - S p ( A , C , ) )  i f C , e C - .  


Let k +  be the cardinality of C+ and let k - be the cardinality of C-. Without 
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loss of generality, assume that k = k +5 k - .  Write 7, = {C,, . . . , C,, 
Ck+l, .. . ,Cn) where C + =  {C,, . . . ,C,). Consider the events E i j  = (C+- Ci) u 
(C-- Cj) for Ci E C+ and Cj E C-. 

Case 1: If there exists i,  j such that Sp(A, Eij)  < 1, then by Lemmas 3.2 
and 3.4, Sp(A, (Ci u Cj)) > 1since E,", = (Ci u Cj). We arrive at  the following 
contradiction. Because there is no dilation in ri = {C,, . . . ,Ci- l, Ci+ ,, . . . , 
Cj-,, Cj+,, . . . ,(Ci u Cj)}, by (1) we know that 

Since Cj E C- and since (Cj, Cj") does not dilate A, by (4), 

But by assumption of dilation in T,, we have, from (I), 

However, C; = (Ei j  u C,). Hence, by Lemma 3.3, using ( * )  and ( *  * ), 

which contradicts (* * * ). 
Case 2: We have that Sp(A, Eij)  > 1 for all i ,  j so that by Lemma 3.2, 

Sp(A, E,",) < 1.Thus, as E,", = (Ci u Cj), Sp(A, (Ci u Cj)) < 1for all Ci E C+, 
Cj E C-. Since h , ~k- we may form the k disjoint pairs Fl = C, u 
C,,,, . . . , F, = C, u C,,, and Sp(A, Fi) < 1,i = 1 , . . . ,k. Let F = U iF,. By 
Lemma 3.3, Sp(A, F )  < 1.However, C + c  F so either Fcis empty or Fcc S-
so that Sp(A, F) 2 1,a contradiction. o 

The following example illustrates how the dilation preserving coarsenings 
may be quite limited. Let P(AC,) = +, P(AC,) = $, P(AC,) = A,PCACCl) 

1 
= E,P ( A T 2 )  = and P(A"C,) = $. So P(A) = P(Ac) = i and P(C,) = $ 
for i = 1,2,3.  Note that Sp(A, C,) = $, 1, for i = 1,2,3 .  If E > a, then 
{C,, C,, C,) dilates A. Since Sp(A, C,) = 1,(C,, C,"} dilates A for every E > 0. 
However, if F < i,neither {C,, C;} nor (C,, C;} dilates A. 

Also, the &-contaminated model has the property that the upper and lower 
conditionals cannot shrink inside _P(A) and P(A).  Specifically, note that 
-P(AIB) < f ( A )  if and only if E > (1 - Sp(A, Be)) and P ( A I B )  > P(A) if and 
only if E > (1 - Sp(A", Bc)). At least one of Sp(A, B 9  and Sp(A" Bc)  must 
be greater than or equal to 1 so that at  least one of these inequalities must 
occur. Hence, it cannot be that ?(A) If(AIB) IP ( A I B )I P(A). 

EXAMPLE3.3 (Total variation neighborhoods). Define the total variation 
metric by 6(P, Q) = supAIP(A)- &(A)]. Fix P and E and assume that P is 
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internal. Let M = {Q; 6(P, Q) I E). Then _P(A) = max{P(A) - E, 0) and P(A) 
= min{P(A) + E,1).Also, 

There are four cases: 
Case 1: P(AB), P(ABc) 5 E. Dilation occurs if and only if 

Case 2: P(AB) I E < P(ABc). Dilation occurs if and only if 

Case 3: P(ABc) I E < P(AB). Dilation occurs if and only if 

Case 4: E < P(AB), P(ABC). Dilation occurs if and only if 

EXAMPLE3.4 (Density ratio classes). Let Cl = {wl,.. . ,w,} and let p = 

(p,, . . . , p,) be a probability vector with each pi  > 0. For k 2 1, define the 
density ratio neighborhood by M,  = {q  = (q,, . . . ,q,); qi/qj 5 kpi/pj for all 
i,j ) .  [A more general case is considered in DeRobertis and Hartigan (1981). 
Also, see Section 4 of this paper.] Then _P(A)= P(A)/(P(A) + kP(Ac)), 
where P is the probability measure generated by p .  Also, _P(AIB)= 

P(AB)/(P(AB) + kP(A"B)). If dp(A, B)  = 0, then [_P(AIB), P(AIB)I = 

[_P(A), P(A)] so dilation does not occur. If dp(A, B) > 0, then _P(AIB) > ?(A) 
so dilation does not occur. If dp(A, B)  < 0, then _P(AIBc) > _P(A) so dilation 
does not occur. Thus, dilation never occurs. This class also posseses many 
other interesting properties-see Wasserman (1992). 

4. Neighborhoods of the uniform measure. In Bayesian robustness it 
is common to use sets of probabilities that are neighborhoods of a given 
probability measure. In this section we investigate neighborhoods of the 
uniform measure on a compact set. Subject to some mild regularity conditions, 
we characterize dilation immune neighborhoods. Specifically, we show that the 
only dilation immune neighborhoods are the density ratio neighborhoods. This 
has important implications in Bayesian robustness since it means that, unless 
these neighborhoods are used, dilation will be the rule rather than the 
exception. It also shows that it is the structure of the class, not necessarily its 
size, that causes dilation. The mathematical techniques used here are based on 
continuous majorization theory as developed in RyfT (1965). See also Hardy, 
Littlewood and P6lya (19521, Chapter 10, and Marshall and Olkin (1979). The 
restriction to neighborhoods around the uniform is, of course, a special case. 
But the restriction to this special case allows for an intense investigation of the 
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phenomenon. Furthermore, neighborhoods of uniform priors are an important 
special case in Bayesian robustness. 

Let R = [O,11, let & ( R )  be the Borel sets and let p be Lebesgue measure. 
Given two measurable functions f and g ,  say that f and g are equimeasur-
able and write f - g if p({w; f (w)  > t } )= p({w; g ( w )  > t ) )  for all t .  Loosely 
speaking, this means that g is a "permutation" of f .  Given f ,  there is a 
unique, nonincreasing, right-continuous function f * such that f * - f .  The 
function f "  is called the decreasing rearrangement of f .  We say that f is 
majorized by g and we write f + g if 1; f = / t g  and 1,"f * I /,"g" for all s. 
Here l f  means l f (w)p (dw) .Let A( f )  be the convex closure of { g ;  g - f } .  Ryff 
(1965)shows that A( f )  = { g ;  g + f } .  We define the increasing rearrangement 
of f to be the unique, nondecreasing, right-continuous function f ,  such that 
f*  - f .  

Let u ( w )  = 1 for all w E R .  Let m be a weakly closed, convex set of 
bounded density functions with respect to Lebesgue measure on R ,  let M be 
the corresponding set of probability measures and let P and P be the upper 
and lower probability generated by M. We call m a neighborhood of u if 
f E m implies that g E m whenever g - f .  This condition is like requiring 
permutation invariance for neighborhoods of the uniform measure on finite 
sets. All common neighborhoods satisfy this regularity condition. From RyfT's 
theorem, it follows that if f E m and g + f ,  then g E m .  The properties of 
such sets are studied in Wasserman and Kadane (1992). If m is a neighbor- 
hood of u ,  we shall say that M is a neighborhood of p. To avoid triviality, we 
assume that M # {p ) . Next, we state a useful lemma. The proof is by direct 
calculation and is omitted. 

LEMMA4.1. Let 99 = { B,, . . . , B,) be a finite partition of R and let f and g 
be two probability density functions such that lBLf = lBLg for i = 1, . . . ,n .  I f f  
is constant over each Bi, then f + g.  

For every f define 

ess sup f 

P(  f ,  = ess inf f ' 

where ess sup f = inat; pUw; f ( w )  > t ) )= 0) and ess inf f = supit; p({w; 
f (w>< t ) )= 01. For k 2 1, define y, = { f ;  p( f )  I k ) . This is the density ratio 
neighborhood of p .  Let d={ A E 4 ( R ) ;  0 < p ( A )  < I}. For every A E d 
define a density fA by 

i fw E A ,  

fA(w) = 

, i f w ~ A C .  

Let PA(dw)= fA(w)p(dw). Note that PA(A)= _P(A).Let m , ( A )  = { d P / d p ;  
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P E M*(A)}. Also define f A  by 

We define PAand m*(A) analogously. 

LEMMA4.2. Suppose that m is a neighborhood of u. For every A E d, 
fA E m ,(A). 

PROOF. Choose f E m ,(A). Then by Lemma 4.1, f~ + f so f~ E m. But 
/A fA =_P(A)so fA E m*(A). 

For every t E (0 , l )  let A, = [0, t], mt  = m,(A,), mt = m*(At), f t  = f A t  
and f, = fA,.Define F(t) = P(A,) and _F(t) =?(At). Also, define 

Let ct = l / (k t t  + (1 - t)) and c, = l / ( t  + kt(l  - t)). Then f t  is equal to ctkt 
on A, and is equal to ct on A;. Similarly, ft is equal to ct on A, and is equal 
to ctk, on A;. It is easy to show that k t  2 1and kt 2 1. If p(A) = p(B), then 
P(A) = _P(B) and P(A)  = F(B). Also, _F(t) + F(1 - t )  = 1. Hence, kt = klPt.-
In particular, k l / L  kl/, = 4, say. 

LEMMA4.3. Suppose that M is a dilation immune neighborhood of p. 
Then, for all t E (0, I), kt 4 and kt 5 k. 

PROOF. Consider t E (0, $). Suppose that k t  > k. There exists n 2 1such 
that nt 5 $ < (n + 1)t. Suppose that nt < $-the proof for the case where 
nt = $ is similar. Define W, = [(i - l)t,  it) for i = 1 , .. . ,n and W,,, = [nt,$1. 
Define Y,= [$ + ( i  - l)t,  + it) for i = 1 , . . . , n  and Y,,, = [$ + nt, I]. Let 
Bi= W, u Y,,A = A,//, and P(dw) = f 1/2(w)p(dw). Then A is independent 
of each B, under P .  Let f, be a rearrangement of f that is equal to ctkt on 
W, and that is equal to ct over all of A",/,. [This is possible since each W, has 
p(W,) 5 t.] Let Q,(dw) = f,(w)p(dw) and a ,  = p(W,) = p(Y,). Then 
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Now, _P(AIB,) 5 PA(AIBi)= PdA)  = f(A). Hence, {B,, . . . ,B,,,} A which 
is a contradiction. Thus, kt  5 k. A similar argument shows that kt I k. The 
relation kt = kl-t establishes the result for all t E (0,l) .  

LEMMA4.4. Suppose that M is a dilation immune neighborhood of p .  Then 
k t  = kt = k for all t E (0,l) .  

PROOF.We prove the result for kt. Consider t E (0, $). Suppose that 
kt  < 4. Let P ( d o )  = f 1 / 2 ( ~ ) p ( d ~ ) ,&(do)  = f t ( ~ ) p ( d o )and R(do )  = 

ft(o)p(do). Let W = [O,ol and Y = [i,11 where w = t/(2(1 - t)). Note that 
w < t SO that W c A,. Let B = W U Y and A = A t .  Then A and B are 
independent under both Q and R. By a similar argument as that in 
the previous lemma, we deduce from the fact that kt  < k ,  that P ( A I B )2 
P(AIB) > Q(AIB) = &(A) = P(A). Let fequal c1l2k on [0,t] U (t + $, 11and 
equal c1I2 on [t, t + $1. Then f - f and P(AIB?2 ~ ( A I B " )> Q(AIBc) = 

&(A) = P(A), where &do)  = f^(w)p(dd Also, _P(AIB)5 R(AIB) = R(A) = 

P(A) and _P(AIBc)5 R(AIBc) = R(A) = _P(A).We have a dilation which is a-
contradiction; thus, k t  2 k. By a similar argument kt  2 &. From kt = kl-t 
this holds for all t E (0,l). From the previous lemma, kt  I L and kt I L .  
Hence, the claim follows. 

Let &(t) = &(A,), where P, is the upper probability generated by the 
density ratio neighborhood y,. The next lemma is a standard fact about 
density ratio neighborhoods and we state it without proof. 

LEMMA4.5. Fk(t) = kt/(kt + (1 - t)). 

LEMMA4.6. IfM is a dilation immune neighborhood of p ,  then F = for 
some k 2 1. 

PROOF.Follows from the last two lemmas. 

We conclude that if M is dilation immune, then M generates the same 
upper probability as y,. But this does not show that m = y,. To show this, we 
need one more lemma. Given k 2 1and t E (0, I), define rh , ,  by 

where ck, ,= {kt + (1 - t)}-'. 
The next lemma gives an integral representation of density ratio neighbor-

hoods. 
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LEMMA4.7 (Integral representation of density ratio neighborhoods). The 
following two statements are equivalent: 

(i) f € y h .  
(ii) There exists a probability measure R on &(a )  and a number z E [I ,  k] 

such that for almost all w,  f *(w) = /,lrz,t(w)R(dt). 

PROOF. Suppose (i) holds. Then 1< z = f *(O)/f "(1) I k. Let h(w) = 

f *(w)/f "(1). Define a set function V by V([O, w]) = (z - h(w))/(z - 1). Then 
V(Q) = 1 so V can be extended to be a probability measure on &(a).  Let 
h",t(w)= rz,t(w)/c",t. Then, for almost all w, /; hz,t(w)V(dt)= V([O, w]) + 
z(1 - V([O, w])) = h(w). Now 

where R is defined by R([O, w]) = V([O, w]) f * ( l ) / ~ " , ~ .Now we confirm that R 
is a probability measure. We have 

Thus, R is a probability measure. Hence, (ii) holds. 
Now suppose that (ii) holds. Then p( f )  = f *(O)/f "(1)= h(0) = z for some 

z E [ I ,k]. Thus, (i) holds. 

THEOREM4.1. Suppose that M is a neighborhood of p.  Then M is dilation 
immune if and only if m = y, for some k. 

PROOF. Suppose that m is dilation immune. From Lemma 4.4 we conclude 
that there exists k 2 1such that rk , tE mt for every t E (0,l) .  It follows that 
rz , tE m for every t E (0 , l )  and every z E [I ,  k]. Let f E 7,. By Lemma 4.7, f 
is a mixture of the rz ,t's so that f E m. Hence, yk c m. 

Now choose f E m. Supposethat f E y,. Then p( f )  = f*(O)/f*(l) = x > k. 
Let t E (0, i)and choose an integer n such that (1 - 2t)/(2t) < n _< 1/(2t). 
Define W,, . . . ,W,, Y,, . . . ,Y,, B,, . . . ,B, and A as in Lemma 4.3 and define 
ht by 

i fw E Wi, 
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Then ht E m since ht 4 f .  For t sufficiently small, p(h;) > k. Then, by the 
same argument used in Lemma 4.3, { B,, . . . ,B,, ,} -+ A-a contradiction. 
Thus, f must be in y, and we conclude that m = y,. 

Finally, we show that y, is dilation immune. Consider any A. Let A = p(A). 
Choose a partition 9?= {B,, . . . ,B,). Let W, = Bi nA and Y,= Bi nA". It 
can be shown that P(AIB, )= kp(W,)/(kp(W,) + p(Y,>>and P(AIB,) = 

p(w.)/(p(W,) + kp(Y,)). Also, P(A) = ka/(ka + (1 - a)) and ?(A) = 

a/(a + k(1 - a)). If this partition dilates A, then, for i = 1, . . . ,n, P(AIB,)2 
P(A)  which implies that p(Y,)/p(W) I(1 - a) /a .  Similarly, _P(AIB,) I 
P(A) which implies that p(Y,)/p( W,) 2 (1 - a)/a.  But for a dilation to occur, 
at least one set of these inequalities must be strict. This is impossible. Hence, 
there can be no dilation. 

We have shown that the only dilation immune neighborhoods of p are 
density ratio neighborhoods. Recall that, for Theorem 4.1, m is assumed to be 
a set of density functions which rules out total variation neighborhoods and 
&-contaminationneighborhoods since these neighborhoods contain measures 
without densities. But, following Section 3, it is easy to see that these 
neighborhoods are dilation prone. Another class of densities, called density 
bounded classes, is discussed in Lavine (1991). Our theorem shows that this 
class is dilation prone. 

5. Ramifications of dilation. In Bayesian robustness neighborhoods of 
probability measures are often used-see Berger (1984, 1990) and Lavine 
(1991). Unless density ratio classes are used, and most often they are not, the 
robust Bayesian must accept dilation. When sets of probabilities result from 
incomplete elicitation of probabilities, one response to dilation might be to 
elicit more precise probabilities. But the results in Section 4 show that this will 
not prevent dilation. Generally, it is the form of the neighborhood, not its size, 
that causes dilation. This does not mean that dilation prone neighborhoods 
should be abandoned. The fact that a dilation may occur for some event may 
not be a problem. However, it is important to draw attention to the phe-
nomenon. We believe that few people who use robust Bayesian techniques are 
aware of the issue. 

Dilation also has ramifications in decision theory. Specifically, Seidenfeld 
(1991) shows that dilation causes the usual relationship between normal and 
extensive forms of decision problems to break down. 

Dilation provides an alternate axiomatic basis for precise probabilities. A 
precise probability may be regarded as a complete order on the set of all 
random variables (gambles). Many critics of probability theory insist on weak-
ening the complete order and using, instead, a partial order. This leads to 
upper and lower probabilities [Walley (1991)l. Now suppose we start with a 
partial order and add two more axioms. The first is the existence of indepen-
dent coin flips. Second, suppose we demand dilation immunity as an axiom. 
Then, by Theorem 2.4, the upper and lower probabilities must agree (as long 
as we rule out the trivial case that dilation is avoided by having upper 
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probabilities equal to 1and lower probabilities equal to 0). Hence, the theory of 
upper and lower probabilities must either tolerate dilation or must rule out all 
but precise probabilities. In defense of the former, see Walley (1991), page 299. 

To conclude, we mention some open questions that we are currently investi- 
gating. First, we are exploring the counterparts of Lemma 3.1 and Theorem 
4.1 applied to more general convex sets. For example, under what conditions 
will there be dilation if the convex set of probabilities is generated by a precise 
likelihood and a set of prior probabilities? Second, we are considering whether 
the "coarsening result" of Theorem 3.1 applies more generally. Third, we are 
investigating statistical applications of dilation. For example, Seidenfeld (1981) 
and Walley (1991), page 299, argue that randomization in experimental design 
can be understood in terms of sets of probabilities. But then dilation occurs 
when the ancillary data of the outcome of the randomization are known. 
Finally, the special role that independence plays in dilation (Section 2) sug- 
gests that there may be useful relations between dilation and the analysis of 
contingency tables using imprecise probabilities. 
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